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The integrated space-time finite volume method for predicting time-dependent
fluid flow problems is developed. By enforcing discrete conservation over space-
time control volumes which fill the space-time domain, this method satisfies global
conservation in space-time while automatically satisfying the Leibnitz Rule and geo-
metrical conservation law. The method is validated using a variety of two-dimensional
problems featuring both prescribed and free boundary motion. Advances in other as-
pects of cell-centered finite volume discretization—most notably in the modelling
of diffusion terms and free surface flows—are also described.c© 1999 Academic Press

Key Words:space-time; finite volume; moving boundary; Navier–Stokes; free sur-
face.

1. INTRODUCTION

The finite volume method has proven to be very successful for solving the equations
of fluid dynamics. According to this method, the solution domain is filled with a mesh,
which is used to define storage locations for each variable: typically these locations are ei-
ther the mesh vertices (forvertex-centeredmethods) or the cell centroids (forcell-centered
methods). Finite control volumes are constructed around each storage location, and the gov-
erning equations integrated over each control volume. The volume integrals are converted
to surface integrals by means of Gauss’ divergence theorem, and the surface integrals are
approximated in terms of variables defined at the adjacent storage locations. By this process,
the differential equations are replaced by algebraic equations: one for each conservation
equation for each control volume.

The finite volume method is strictly conservative in the sense that global conservation
is satisfied by the discrete equations. This follows provided the discrete transport through
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498 ZWART, RAITHBY, AND RAW

each internal face has the same magnitude but opposite sign for the two control volumes
which share the face. Consequently, if the algebraic equations for the two control volumes
are added together, the terms arising from the surface integral for the face they share must
cancel.

For time-dependent problems, the finite volume principle has traditionally been used to
discretize the spatial dimensions only. Time has been discretized using a finite difference
procedure, such as the Euler or Runge–Kutta methods. If the mesh undergoes motion
these methods require the use of the Leibnitz Rule to account for mesh motion. Global
conservation is satisfied provided the geometrical conservation law (GCL) [3, 25, 27] is
satisfied. If, however, the mesh topology changes with time (for instance by vertex insertion
or removal), these methods are not conservative.

In this paper a new approach to enforcing global conservation for time-dependent prob-
lems is developed. It is based on discretizing time as well as space with the finite volume
principle and is therefore called theintegrated space-time(IST) finite volume method. With
this method, the space-time solution domain is filled with a space-time mesh, which is used
to construct space-time control volumes. The governing equations are integrated over each
space-time control volume, and the volume integrals are converted to surface integrals using
Gauss’ divergence theorem. The IST finite volume method is conservative in space-time
provided the discrete transport through each internal space-time face has the same mag-
nitude but opposite sign for the two control volumes which share the face. Consequently,
the Leibnitz Rule and GCL areimplicitly satisfied, even if the mesh topology changes with
time. The price to be paid for this flexibility is the need to generate a space-time mesh
and discretize the equations in space-time. The IST concept was introduced and applied
to one-dimensional problems in a previous paper [30]. The present paper generalizes the
concept to multi-dimensions.

The IST finite volume method bears some conceptual resemblance to space-time finite
element methods, which have existed for some time [6–8, 22, 23]. In order to retain a time-
marching algorithm, these methods have introduced the notion of time slabs. The solution is
made discontinuous across time planes, which bound the time slabs, using the discontinuous
Galerkin method. With IST, we also use time slabs to obtain a time-marching scheme. The
discontinuous Galerkin method is not needed, however, because IST is cell-centered in
space-time, leading naturally to a discontinuous solution field at the time planes. Moreover,
unlike most space-time finite element methods, our space-time meshing algorithm [29]
avoids the need for global remeshes and solution projections.

Potential application of the IST finite volume method occurs wherever conservation in
time is important. One may identify two particular cases: time-accurate mesh adaptation
and moving boundary problems. In this paper moving boundary problems are emphasized.
We consider both prescribed boundary motion and and free surface flows. The important
additional factor for free surface flows is the kinematic condition. Like a number of other
methods [12, 13, 24], we enforce this condition in a surface-adaptive manner by moving
boundary vertices in such a way that the mass flows through the boundary are driven to
zero; however, the mechanism for doing so is new.

The paper is organized as follows. In Section 2, our finite volume methodology will be
described for steady flows, without the complication of space-time. That methodology will
then be extended to space-time in Section 3. Section 4 will consider the application of IST
to free surface flows, and Section 5 will provide some sample test cases.
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FIG. 1. Typical control volume faces and geometrical nomenclature. Left, internal face; right, boundary face.

2. DISCRETIZATION FOR STEADY FLOWS

In this section, our finite volume methodology for steady flow is described. An unstruc-
tured cell-centered method is chosen, where the mesh cells are the control volumes over
which discrete conservation is enforced. Typical cells, together with interior and boundary
faces, are illustrated in Fig. 1. Important vectors shown on the diagram includeni (or n̂), the
unit outward-directed normal;si (or ŝ), the unit vector joining cell centroids; andri (or r ),
the vector joining a cell centroid to the face midpoint.

2.1. The Scalar Conservation Equation

Before describing the finite volume method for the full Navier–Stokes equations, it is
useful to consider the simplerscalar conservation equation, which represents the conser-
vation of a generic scalarφ transported by advection and diffusion. The differential form
of this equation at steady state is

∂(ρuiφ)

∂xi
+ ∂qi

∂xi
= 0, (1)

whereui is the (known) velocity in thexi -coordinate direction, and

qi = −0 ∂φ
∂xi

, (2)

0 being the diffusion coefficient. By integrating this over a control volumeÄ and using
Gauss’ divergence theorem, we obtain the integral form∫

S
ρφui ni dS+

∫
S

qi ni dS= 0. (3)

For each control volume, the surface integrals are approximated using the midpoint rule,
leading to discrete control volume equations of the form∑

f

(
Fa

f + Fd
f

) = 0. (4)

Fa
f andFd

f respectively represent the numerical approximations of the advective and diffu-
sive transport through face f. These approximations in general involve solution values and
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solution gradients from the adjacent cells. Cell gradients are calculated using a least-squares
technique [1].

The advective transport is given byFa
f = Jfφf , whereJf is the mass flow through the face.

An upwind-biased discretization is used forφf ,

φf = φup+ 8∇φ · r |up , (5)

where the subscript up denotes the upwind cell value. One may choose:8= 0, yielding a
first-order method;8= 1, which applies a second-order correction toφup; or a nonlinear
expression to enforce boundedness near extrema [2, 26].

The diffusive transport is given by

Fd
f = −0∇φ · n̂ Sf, (6)

Sf being the face area. A second-order linearly exact discretization of this term has been
developed by decomposingFd

f into contributions along two components,

Fd
f = −0(∇φ · (αŝ)+ ∇φ · (n̂− αŝ))Sf, (7)

where

∇φ · (αŝ) = αφQ − φP

1s
(8)

and∇φ is the average of the adjacent cell gradients. The optimal decomposition is obtained
by choosingα= n̂ · ŝ, in which case the two vectorsŝandn̂−αŝbecome orthogonal [30].
This choice also extends unambiguously to anisotropic continua (such as space-time).

The algorithm for implementing the above discretization is as follows:

(1) Assemble an algebraic conservation equation for each cell. The assembly is per-
formed by looping over all faces, linearizing the fluxes through each face in terms of adjacent
cell values, and scattering the coefficients and right-hand sides to the linear equations for
the adjacent cells. This leads to a matrix equation of the form

[ A]{φ} = {b}. (9)

(2) Calculate the residual of the old solution field as

{r } = {b} − [ A]{φo}. (10)

Normalize the residuals. For cellP, the normalized residual is defined as

r̂ P =
∣∣∣∣ r P

aP(φmax− φmin)

∣∣∣∣ , (11)

whereaP is its central coefficient andφmaxandφmin are the maximum and minimum solution
values.

(3) If the maximum normalized residual is reduced below its target value, stop. Oth-
erwise solve the system of equations

[ A]{δφ} = {r } (12)
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and update the solution field. The system is solved using the algebraic multigrid solver of
Raw [20].

(4) Return to step (1).

2.2. The Navier–Stokes Equations

The steady, incompressible Navier–Stokes equations consist of the continuity equation,

∂ui

∂xi
= 0, (13)

and the momentum equation,

∂(ρu j ui )

∂xj
= − ∂p

∂xi
+ ∂τ j i

∂xj
. (14)

In this formulation,p is the modified pressure (having the hydrostatic component removed)
and

τ j i = µ
(
∂ui

∂xj
+ ∂u j

∂xi

)
, (15)

µ being the dynamic viscosity.
The integral forms of these equations are ∫

S
ρui ni dS= 0, (16)∫

S
ρu j n j ui dS+

∫
S

pni dS−
∫

S
τ j i n j dS= 0. (17)

In discrete form, the equations are ∑
f

Jf = 0, (18)

∑
f

(
Fa

f,i + F p
f,i + Fv

f,i

) = 0, (19)

whereJf , Fa
f,i , F p

f,i , andFv
f,i respectively represent the numerical approximations of mass

flow, advective momentum transport, pressure force, and viscous force at each face.
The advection term of the momentum equation is treated in the same manner as with the

scalar equation. The viscous force is also discretized in the same manner as the diffusive
flux for the scalar case. For the pressure term, a linearly exact centered discretization is
used,

F p
f,i = pfni Sf, (20)

with

pf = 1

2
(pP + pQ)+ ∇ p · r c, (21)
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wherer c is the vector from the midpoint between centroids P and Q to the face midpoint,
and∇ p is the average of the adjacent cell pressure gradients. An alternative choice would
be to find the pointR on the line joining centroidsP and Q which is closest to the face
midpoint, weightpP andpQ according their distance fromR, and definer c to be the vector
from R to the face midpoint. In our experience, this modification has a negligible effect on
the solution.

The mass flow through a face isJf = ρuf,nSf . It is important to discretizeuf,n in a special
manner in order to avoid pressure-decoupling [15]. Standard colocated approaches follow
the lead of Rhie and Chow [21] in introducing a pressure gradient dependence intouf,n.
The particular form used here is

uf,n = ūf,n + αdf

(
pQ − pP

1s
− ∇ p · ŝ

)
, (22)

whereuf,n is discretized in the same manner aspf , ∇ p is the average of the adjacent cell
pressure gradients, and

df = −1

2

(
ÄP

aP
+ ÄQ

aQ

)
, (23)

a being the average central coefficient of the discrete momentum equations andÄP and
ÄQ being the volumes of cellsP andQ.

The matrix equation for this system has a block structure and is solved using the same
solver as for the scalar case [20].

3. DISCRETIZATION FOR UNSTEADY FLOWS

In this section, the IST finite volume algorithm is presented. Just as discrete conservation
equations were derived for spatial control volumes in the previous section, in this section
discrete conservation equations will be derived for space-time control volumes. Before
doing so, however, we will rewrite the governing equations in a more useful form and
briefly describe our space-time mesh generation procedure.

3.1. Mathematical Formulation

With the IST finite volume method, the discretizations of space and time are unified. In
doing so, it is helpful to unify the space and time terms of the governing equations. We
begin with the conventional form of the unsteady scalar equation,

∂(ρφ)

∂t
+ ∂(ρuiφ)

∂xi
+ ∂qi

∂xi
= 0. (24)

The IST formulation requires the use of space-time vectors, which are distinguished from
purely spatial vectors by a prime. As space-time vectors have an increased span, the subscript
t is defined to be one more than the number of spatial dimensions. Thus the time coordinate
is x′t . By defining a “time velocity”u′t = 1, the transient and advection terms of Eq. (24) are
combined as

∂(ρφ)

∂t
+ ∂(ρuiφ)

∂xi
= ∂(ρu′iφ)

∂x′i
. (25)
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We must also ensure that the other terms maintain the special nature of time. For instance,
diffusion occurs in space but not in time. The anisotropy of the space-time continuum is
reflected by the definition of a space-time metric tensorγ ′i j :

γ ′i j =
{

1 if i = j andi, j < t,

0 otherwise
(26)

Then Eq. (24) may be rewritten as

∂(ρu′iφ)
∂x′i

+ ∂q′i
∂x′i
= 0, (27)

where

q′i = −γ ′j i 0
∂φ

∂x′j
. (28)

In the same manner, the continuity and momentum equations may be written in IST form
as

∂u′i
∂x′i
= 0, (29)

∂(ρu′j u
′
i )

∂x′j
= −γ ′j i

∂p

∂x′j
+ ∂τ

′
j i

∂x′j
, (30)

where

τ ′j i = γ ′kiγ
′
l j µ

(
∂u′k
∂x′l
+ ∂u′l
∂x′k

)
. (31)

In the momentum equation, the free indexi varies over the spatial dimensions. It is fascinat-
ing to observe, however, that if the time component is considered, the continuity equation
is recovered. It is therefore possible to express the mass and momentum system as a single
“space-time momentum equation.” For our purposes, however, there does not seem to be
any advantage in doing so, and the continuity and momentum equations will be considered
separately.

3.2. Space-Time Mesh Generation

Just as conventional finite volume methods fill the spatial domain with spatial cells, so
also the IST finite volume method must fill the space-time domain with space-time cells.
Our space-time meshing algorithm for moving boundary problems is described in detail
elsewhere [28, 29]. Briefly, the space-time domain is divided into time slabs, illustrated
for one spatial dimension in Fig. 2. Each time slab is tessellated using a four-step proce-
dure, illustrated in Fig. 3. In step (a), the lower spatial mesh is extruded in time. In step
(b), the boundary vertices on the new time plane are moved to their new locations. Step
(c) modifies the mesh topology next to the boundary, in order to maintain the mesh quality
on the new time plane, by adding and removing vertices. This step may introduce new space-
time cell shapes (triangles rather than quadrilaterals). The final step (d) is to perform some
smoothing of vertices on the new time plane. This algorithm applies also to two dimensions,
but with added complexity. The extrusion step produces triangular prism space-time cells.
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FIG. 2. Division of space-time domain into time slabs.

Adding and removing vertices near and on the boundary generates space-time tetrahedra
and pyramids.

We anticipate still more complexity in extending the algorithm to three-dimensional
problems, where four-dimensional space-time cells are required. In fact, it is our experience
that space-time mesh generation is the most difficult aspect of IST. Before it can find
widespread use, a more general space-time meshing strategy must be developed.

Typical faces which bound space-time control volumes for one spatial dimension are
illustrated in Fig. 4. Important vectors shown on the diagram aren′i (or n̂′), s′i (or ŝ′), and
r ′i (or r ′), which are space-time extensions of the vectors shown in Fig. 1 for the steady
algorithm. We also distinguish betweenspace-time faces, which span the distance between
time planes; andtime faces, which lie on time planes.

3.3. Scalar Conservation Equation

The IST finite volume method for the scalar conservation equation begins by inte-
grating Eq. (27) over each space-time finite volumeÄ′. Since all terms are in divergence
form, Gauss’ divergence theorem is used to convert them to surface integrals,∫

S′
ρu′i n

′
iφ dS′ +

∫
S′

q′i n
′
i dS′ = 0, (32)

whereS′ is the space-time surface boundingÄ′ andn′i is the outward-directed space-time
normal toS′ .

FIG. 3. Generating a mesh for a time slab: (a) extrude in time, (b) move boundaries, (c) add/remove vertices,
(d) smooth.
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FIG. 4. Typical control volume faces in space-time. Top left, internal space-time face; top right, boundary
space-time face; bottom, time face.

The surface integrals ae approximated at the midpoints of the space-time faces bounding
the control volume. The resulting discrete equation is∑

f

(
Fa

f + Fd
f

) = 0, (33)

whereFa
f andFd

f respectively represent the approximations to the advective and diffusive
transport through face f. They are written in terms of solution values and gradients (including
the time derivative) at the adjacent cells. Cell gradients are calculated using the least-squares
techniques, but with two complications. First, the least-squares stencil is one-sided in time,
for the space-time cell neighbours from the next time level are not yet known. Second, the
least-squares matrix may be degenerate for some space-time cell shapes and may have to
be adapted to include additional points from the previous time slab.

The advective transport through a face isFa
f = Jfφf . The mass transportJf has distinctly

different interpretations at space-time and time faces. At space-time faces, it represents
the quantity of mass which crosses the face during the time slab, whereas at time faces, it
represents the quantity of mass at that time level. At both faces,φf is obtained from the
same upwind-biased approximation:

φf = φup+8∇′φ · r ′|up. (34)

It is interesting to note that choosing8= 0 for time faces on orthogonal space-time meshes
gives a discretization equivalent to the backward Euler method for the transient term, while
8= 1 is similar to a three-level second-order backward-difference scheme. The current
framework, however, is capable of maintaining second-order spatial and temporal accuracy
also on general space-time meshes. Nonlinear expressions for8 may also be used. For
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instance, the limiter of Barth and Jesperson [2] may be extended to space-time by requiring
that allφf around a cell be bounded by the space-time neighbours of the cell. The space-time
neighbours from the next time slab must be excluded, however, for they are not yet known.
As a result, spatial and temporal accuracy is reduced to first order not only near extrema
but also wherever temporal gradients are large compared with spatial gradients.

The value ofφf must be specified at all inflows into the space-time domain. This includes
not only traditional inflow boundaries but also the initial time planet0, whereu · n̂′ =−1.
The values ofφf specified at these time faces are precisely the same as initial conditions
specified in traditional methods.

The diffusive transport through a face is

Fd
f = q′ · n̂′ Sf, (35)

whereq′ is a vector having components

q′i = −γ ′j i 0
∂φ

∂x′j
. (36)

Unlike the corresponding term for steady flow, this expression involves an anisotropic
medium. However, the discretization developed for steady flow may be extended to anisotro-
pic situations in an unambiguous manner by recognizing that the diffusive flux is driven
by the component of the gradient vector in the direction of the spatial component ofn̂′. By
defining a vectorm′ having componentsm′i = γ ′j i n′j , the diffusive transport becomes

Fd
f = −0∇′φ ·m′ Sf . (37)

This expression has the same form as Eq. (6) and may be decomposed in the same manner:

Fd
f = −0(∇′φ · (αŝ′)+ ∇′φ · (m′ − α ŝ′))Sf . (38)

The natural choice for the scaling factorα is α=m′ · ŝ′. But at some highly nonorthogonal
space-time faces, this choice may produce negativeα, leading to convergence difficulties.
Instead we chooseα=Max(m′ · ŝ′, 0). This diffusion discretization is valid not only for
space-time, but also for general anisotropic diffusivities. Because of the special nature of
γ ′j i in space-time, however,Fd

f is zero at time faces.
The algorithm used to implement this discretization is as follows:

(1) Generate the space-time mesh for the current time slab.
(2) Obtain the solution for the current time slab using the same algorithm as described

for steady flows in Subsection 2.1. (Note that the face loop must include both time faces
and space-time faces.)

(3) Return to step (1) until the specified stopping time has been reached.

3.4. Navier–Stokes Equations

Upon integration over the space-time control volumes, Eqs. (29) and (30) become∫
S′
ρu′i n

′
i dS′ = 0, (39)∫

S′
ρu′i u

′
j n
′
j dS′ +

∫
S′
γ ′j i pn′j dS′ −

∫
S′
τ ′j i n

′
j dS′ = 0. (40)
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In discrete form, the equations are ∑
f

Jf = 0, (41)

∑
f

(
Fa

f,i + F p
f,i + Fv

f,i

) = 0. (42)

Jf , Fa
f,i , F p

f,i , andFv
f,i respectively represent the mass flow, advective momentum transport,

pressure force, and viscous force at each face.
The advection and viscous terms of the momentum equation are treated in the same

manner as the corresponding terms from the scalar equation. The pressure force at space-
time faces is a straightforward generalization of Eq. (20) to space-time,

F p
f,i = γ ′j i pfn

′
j Sf, (43)

where

pf = 1

2
(pP + pQ)+ ∇′p · r ′c. (44)

The discretization of the mass flowJf presented for steady flow also generalizes to space-
time, but is slightly more involved. It is defined asJf = ρu′f,nSf , whereu′f,n= u′f · n̂′ is the
perpendicular component of the space-time velocity vector. By defininguf,n to be the dot
product of the spatial components ofu′f andn̂′, n′t to be the time component ofn′, and using
the identityut = 1, the mass flow may be expressed asJf = ρ(uf,n + n′t )Sf . The first term
represents the spatial contribution to the mass flow, i.e., the mass which exits (or enters)
the control volume due to fluid flow. The second term represents the temporal contribution,
i.e., the mass left behind (or swallowed) as the face moves with time. At time faces, the
spatial contribution vanishes, soJf = ρSf . At space-time faces,uf,n is discretized in a similar
manner as with steady flow, but modified slightly to ensure time-step independence at steady
state [10].

4. FREE SURFACE FLOWS

Free surface flow problems differ from those with prescribed boundary motion in the
conditions which must be applied to the free surface. The momentum balance at the free
surface is closed with thedynamic conditions, which state that the forces at the interface
are in equilibrium. They are not difficult to apply.

The greater difficulty lies with thekinematic condition, which is used to determine the
interface position. It specifies that no mass flows through the free surface faces:

Jf = ρu′ · n′ Sf = 0. (45)

We implement this condition in a surface-adaptive framework, wherein the mesh conforms
to the free surface. By satisfying the kinematic condition directly, rather than switching to
a Lagrangian formulation at the free surface, overall conservation is strictly enforced.

This approach is similar to that developed by others [12, 17, 24] in a conventional finite
volume context. Enforcing this form of the kinematic condition for each face is awkward
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in a cell-centered context, however, because the number of vertices which define the free
surface may differ from the number of free faces. Workarounds have been developed by
staggering the control volumes below the free surface [24] or adding control points to the
free faces [12]. We propose a new approach, wherein the kinematic condition is not en-
forced for the faces, but rather for the vertices. Defineξi to be the set of free faces which
touch a free vertex andw j i to be a weighting factor expressing the fraction of the mass flow
through facej which is apportioned to vertexi . Then the condition we enforce isFi = 0,
where

Fi =
∑
j∈ξi

Jjw j i (46)

is the mass which crosses the portion of the free surface associated with vertexi . We choose
w j i = 1/n, n being the number of vertices which touch facej .

The algorithm used to link the solution of the kinematic condition and the hydrodynamic
equations is:

(1) Solve the continuity and momentum equations, treating the free surface as a pres-
sure boundary.

(2) Calculate the residual mass flowri = Fi for all vertices on the free surface.
(3) Move the vertices on the free surface so thatFi = 0. The procedure for this is

described below.
(4) Return to step (1) until the solution for the current time slab is converged.

Step (3) involves assembling and solving a matrix for the vertex displacements. Define
1sk to be the displacement of vertexk in a specified direction (which we take to be the
perpendicular direction) which will drive the residual mass flows (defined in Step (2)) to
zero. Newton’s method is used to obtain the displacements as

∂Fi

∂sk
1sk = −ri . (47)

The Jacobian matrix∂Fi /∂sk is constructed numerically by shifting each vertex by a small
amount and calculating the change in the mass flows for the surrounding vertices. In two-
dimensions, the matrix is tridiagonal.

On its own, this algorithm is not stable. In particular, the case of there being fewer free
faces than vertices results in a singular matrix, which manifests itself as unconstrained
wiggles in the free surface profile. Problems also exist when there are enough free faces.
An analysis of the dominant effects on the matrix indicates that a typical row has the
form

−ρl

4
(1si−1+ 21si +1si+1) = −ri , (48)

wherel is the length of the edges on the free surface. The resulting solution is prone to
wiggles because the homogenized system admits solutions such as1si = (−1)i .

Both types of wiggles are high-frequency (having the same frequency as the mesh) and
are eliminated using a new procedure calledmass redistributionalong the free surface.
Consider the wiggly free surface shown in Fig. 5. The wiggle will be damped if the mass
flux FP for vertex P is decreased by an amountJr and the mass fluxFQ for vertex Q
is increased by the same amount. In essence, mass is redistributed between vertices across
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FIG. 5. Top, a free surface wiggle; bottom, proposed damping mechanism.

free surface faces. IfJr
j i represents the redistributed mass to vertexi across facej , the

mass flow through the portion of the free surface associated with vertexi is redefined
as

Fi =
∑
j∈ξi

(
Jjw j i + Jr

j i

)
. (49)

It remains to find an expression for the redistributed massJr
j i . From Fig. 5, it is clear

that a wiggle leads to a difference between the local edge tangent vectort̂ and the mean
edge tangent vector̂t. (The mean edge tangent is determined as the average of the ver-
tex tangents which touch the edge, where each vertex tangent is itself the average of the
edge tangents which it touches.) The wiggle will be eliminated when the mass associated
with the area of the cross-hatched triangle is redistributed from vertexP to vertexQ. If A
is the triangle area, then

Jr = ρA

≈ ρ l 2

8
(t̂ × t̂). (50)

ThenJr
j P =−Jr andJr

j Q = Jr .
With this algorithm, the kinematic condition is not satisfied for the faces. It is satisfied,

however, both globally and in the neighbourhood of each vertex provided that, for every
face j ,

∑
i∈ψ j

w j i = 1 and
∑

i∈ψ j
Jr

j i = 0, whereψ j is the set of free vertices which touch
the face. A simple proof of this is found in [28].

5. TEST CASES

The IST solver was tested using a number of problems having analytical solutions [28, 30].
Mesh refinement studies using these problems showed second-order accuracy in space and
time if no limiting of the advection terms was performed and first-order accuracy if limiting
was performed. The following test cases illustrate the behaviour on more difficult problems.
These cases were executed on a SPARC Ultra 10 processor running at 300 MHz with 1 GB
RAM.
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FIG. 6. Geometry of moving indentation test case, withb= 1.

5.1. Duct with a Moving Indentation

This section describes a test case involving prescribed boundary motion. Consider a
channel featuring a moving indentation in one wall. Experimental studies of this type of
flow have been carried out by Pedley and Stephanoff [16], and numerical studies have been
performed using a vorticity-stream function approach [18] and a finite volume method [4].
The geometry is shown in Fig. 6. The oscillation period isT and the normalized time is
t∗ = t/T . The height of the indentation at a particular time ish= .19(1− cos(2π t∗)), and
the curved portion of the lower wall is described by

y =
{

0.5h(1− tanh(4.14(x − 5.25))) if 4b < x < 6.5b,

0.5h(1+ tanh(4.14(x + 5.25))) if −6.5b < x < −4b.
(51)

As with the previous numerical studies, only the first cycle of the flow is solved. Fully
developed conditions are assumed att = 0. Solutions have been obtained on a coarse mesh
(having initially 6622 triangles and1t∗ = 0.02) and a fine mesh (having initially 25,896
triangles and1t∗ = 0.01). The spatial meshes on various time planes around the downstream
end of the indentation for the coarse run are given in Fig. 7. The coarse mesh requires an
average of 15 iterations per time step to reduce all normalized residuals below 10−4, leading
to a total CPU time of 35 minutes. The fine mesh requires an average of 14 iterations per
time step, leading to a total CPU time of 5 h.

Normalized shear stresses along the lower channel wall are plotted for both the coarse
and fine mesh runs in Fig. 8. The plot shows that a mesh-independent result has not yet been
attained, although the qualitative behaviours are similar. These solutions have roughly the
same accuracy as other computations [4]. It should be noted that the high-frequency kinks
in the shear stress profiles are induced by the irregular space-time cells where vertices have
been added or removed.

5.2. Breaking Dam

The next test case involves the collapse of a two-dimensional column of fluid. Experiments
of this nature using several configurations were performed some time ago by Martin and
Moyce [11]. It is also a common numerical test case [8, 9, 14,19]. We consider the case
having an initial aspect ratioh0/w0= 2, whereh0 is the initial column height andw0

is the initial width. As viscous effects are negligible, the flow is modelled as inviscid.
A dimensionless time is defined ast∗ =√2g/w0t and a dimensionless front position as
w∗ =w/w0. The problem is solved in the time range 0< t∗ < 5 using a coarse mesh (having
initially 130 cells and1t∗ = 0.05) and a fine mesh (having 500 cells and1t∗ = 0.025). The
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FIG. 7. Mesh in the downstream vicinity of the indentation for the moving indentation test case on time planes
t∗ = 0.1, 0.2, . . . ,1.0. The sequence runs by column.

spatial mesh for the fine grid is shown for various time levels in Fig. 9. The figure clearly
demonstrates the capacity of the method to handle large changes in the free surface while
maintaining mesh quality. The coarse mesh requires an average of 8 iterations per time step
to reduce all normalized residuals below 10−3, leading to a total CPU time of 37 s. The
fine mesh requires an average of 6 iterations per time step, leading to a total CPU time of
4.3 minutes.

To compare the numerical results with the experiments, a plot of front positionw∗

against time is given in Fig. 10. It is important to point out that the experimental results
have undergone a time shift of1t∗ = 0.3 in order to compensate for uncertainties in the
time origin. This shift is consistent with what is performed in other numerical studies in
the literature. With this shift, there is excellent agreement between the experimental and
computed results. The plot also shows that the solution is nearly mesh-independent.

5.3. Overturning Wave

A final test case illustrates the capability of this free surface algorithm on a challenging
flow—an overturning wave. The wave is generated in a water channel by a piston wavemaker,
as described by Dommermuthet al.[5]. The piston has a time-varying frequency, amplitude,
and phase carefully chosen to generate a plunging breaker some distance downstream. These
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FIG. 8. Shear stress profiles along the lower channel wall for the moving indentation test case. Top, coarse
grid; bottom, fine grid.

authors performed both an experimental study and numerical calculations using a nonlinear
panel method. The wave channel geometry is illustrated in Fig. 11. The dimensions are
normalized by the undisturbed water height, so that the height is 1 m and the length 20 m.
Inviscid flow is assumed, and the density and gravitational constant are set to unity.

In the present calculations, the mesh has initially 23,170 triangles, which are concentrated
nearx= 12 where the wave overturns. The spacing also decreases with time in order to
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FIG. 9. Mesh development for breaking dam test case on time planest∗ = 0, .5, 1, 1.5, . . . ,5.0.
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FIG. 10. Comparison between calculated and experimental results for the breaking dam test case. The plot
shows the evolution of the dimensionless front positionw∗ with dimensionless timet∗.

obtain adequate resolution of the overturning wave: att = 51.76, when the computations
end, there are over 60,000 triangles. The initial time step is 0.1 and decreases with time in
an adaptive manner, where no boundary vertex may move more than a specified fraction
of its local spacing in one time step. The time step at the end of the computations is about
0.00035, and a total of 3200 time slabs are required. An average of four iterations per
time slab is required to reduce all normalized residuals below 10−3, leading to a total CPU
time of about 49 h. Most of this effort is required for the overturning phase. The collision
phase is not simulated because the space-time meshing algorithm does not allow for surface
reconnection.

The experimental and numerical results provided by Dommermuthet al. [5] include
surface elevations at various locations along the wave channel. The elevations at the same
locations using the current results are plotted in Fig. 12. The agreement with the experimental
data, also included in the plot, is excellent. Outlines of the predicted surface profile during
the overturning stage are plotted for various times in Fig. 13. Figure 14 shows a close-up
of the mesh att = 51.75, just before collision.

FIG. 11. Wave channel geometry used in overturning wave test case.
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FIG. 12. Free surface elevations against time at various locations in the wave channel for the overturning
wave test case. —, computed; ---, experimental.
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FIG. 13. Outlines of the overturning wave at timest = 50.70, 51.05, 51.24, 51.40, 51.54, 51.65, 51.76.
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FIG. 14. Close-up of the overturning wave att = 51.75.

6. CONCLUSIONS

The integrated space-time (IST) finite volume method for unsteady flows, based on a
unified discretization of space and time, has been developed. The computational benefits
of time-marching are retained by subdividing the space-time domain into time slabs. The
method is strictly conservative, even when mesh points are added or removed. The method
has been tested for moving boundary problems, including free surface flows. For this class
of flow, a new procedure for satisfying the kinematic condition has been developed. For
the future, IST also holds promise for time-accurate conservative mesh adaptation and
three-dimensional moving-boundary problems provided that a suitably general space-time
meshing strategy can be developed.
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4. I. Demirdz̆ić and M. Peri´c, Finite volume method for prediction of fluid flow in arbitrarily shaped domains
with moving boundaries,Int. J. Numer. Methods Fluids10, 771 (1990).

5. D. G. Dommermuth, D. K. P. Yue, W. M. Lin, R. J. Rapp, E. S. Chan, and W. K. Melville, Deep-water
plunging breakers: A commparison between potential theory and experiments,J. Fluid Mech. 189, 423
(1988).

6. A. M. Froncioni, P. Labb´e, A. Garon, and R. Camarero, Interpolation-free space-time remeshing for the
Burgers equation,Comm. Numer. Methods Eng.13, 875 (1997).

7. P. Hansbo, The characteristic streamline diffusion method for convection-diffusion problems,Comput. Meth-
ods Appl. Mech. Engrg.96, 239 (1992).

8. P. Hansbo, The characteristic streamline diffusion method for the time-dependent Navier–Stokes equations,
Comput. Methods Appl. Mech. Eng. 99, 171 (1992).

9. C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries,J. Comput.
Phys. 39, 201 (1981).

10. S. Majumdar, Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered
grids,Numer. Heat Transfer13, 125 (1988).

11. J. C. Martin and W. J. Moyce, An experimental study of the collapse of liquid columns on a rigid horizontal
plane,Philos. Trans. Roy. Soc. London Ser. A244, 312 (1952).

12. S. Muzaferija and M. Peri´c, Computation of free-surface flows using the finite-volume method and moving
grids,Numer. Heat Transfer Part B32, 369 (1997).

13. S. Muzaferija and M. Peri´c, Computation of free-surface flows using interface-tracking and interface capturing
methods, inNonlinear Water Wave Interaction, edited by O. Mahrenholtz and M. Markiewicz (Computational
Mechanics, Southhampton, 1998).

14. D. Pan, Y.-S. Yang, and C.-H. Chang, Computation of internal flow with free surfaces using artificial com-
pressibility,Numer. Heat Transfer Part B33, 119 (1998).

15. S. V. Patankar,Numerical Heat Transfer and Fluid Flow(Hemisphere, Washington, DC, 1980).

16. T. J. Pedley and K. D. Stephanoff, Flow along a channel with a time-dependent indentation in one wall: The
generation of vorticity waves,J. Fluid Mech. 160, 337 (1985).

17. G. D. Raithby, W.-X. Xu, and G. D. Stubley, Prediction of incompressible free surface flows with an element-
based finite volume method,Comput. Fluid Dynam. J. 4, 353 (1995).

18. M. E. Ralph and T. J. Pedley, Flow in a channel with a moving indentation,J. Fluid Mech. 190, 87 (1988).

19. B. Ramaswamy and M. Kawahara, Lagrangian finite element analysis applied to viscous free surface flow,
Int. J. Numer. Methods Fluids7, 953 (1987).

20. M. Raw,Robustness of Coupled Algebraic Multigrid for the Navier–Stokes Equations, AIAA Paper 96-0297,
1996.

21. C. M. Rhie and W. L. Chow, Numerical study of the turbulent flow past an airfoid with trailing edge separation,
AIAA J. 21, 1525 (1983).

22. T. E. Tezduyar, M. Behr, and J. Liou, A new strategy for finite element computations involving moving bound-
aries and interfaces—The deforming-spatial-domain/space-time procedure. I. The concept and the preliminary
numerical tests,Comput. Methods Appl. Mech. Eng. 94, 339 (1992).

23. T. E. Tezduyar, M. Behr, and J. Liou, A new strategy for finite element computations involving moving
boundaries and interfaces—The deforming-spatial-domain/space-time procedure. II. Computation of free-
surface flows, two-liquid flows, and flows with drifting cylinders,Comput. Methods Appl. Mech. Eng. 94, 353
(1992).
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